您现在的位置是: 首页 > 录取信息 录取信息

高考答案理科答案,高考答案理综答案

tamoadmin 2024-06-11 人已围观

简介1.2006上海高考数学试题答案理科2.2013辽宁高考理科数学选择题12题详细解答3.2022年全国乙卷高考数学试题答案4.高考理科数学题,求17题过程及答案 在还没有实行新高考政策的省份,数学被分为文科数学和理科数学,我就在本文为大家带来2021年全国高考数学试题理科全国乙卷,供2021年考生参考。 一、 2021年高考理科数学试题全国乙卷(含完整答案分析) 试

1.2006上海高考数学试题答案理科

2.2013辽宁高考理科数学选择题12题详细解答

3.2022年全国乙卷高考数学试题答案

4.高考理科数学题,求17题过程及答案

高考答案理科答案,高考答案理综答案

在还没有实行新高考政策的省份,数学被分为文科数学和理科数学,我就在本文为大家带来2021年全国高考数学试题理科全国乙卷,供2021年考生参考。

一、 2021年高考理科数学试题全国乙卷(含完整答案分析)

试题如下

参考答案

2021年高考即将开始,关于2021年高考全国乙卷数学理科试题及答案,高考100网将在试题及答案正式公布以后,第一时间进行更新,请大家持续关注高考100网。

二、志愿填报参考文章

2021年陕西450分理科能上什么大学?陕西450分的二本学校名单

2021年考军校眼睛近视可以吗?附不限视力的军校及专业

2021年医学院校排名100强:医学院校综合实力排名

2006上海高考数学试题答案理科

2022年全国高考将在6月7日开考,相信大家都非常想要知道陕西高考文科数学和理科数学科目的答案及解析,我就为大家带来2022年陕西高考数学答案解析及试卷汇总。

2022年陕西高考答案及试卷汇总

点击即可查看

大家可以在本文 后输入高考分数查看能上的大学,了解更多院校详细信息。

一、陕西高考数学真题试卷

文科数学

理科数学

二、陕西高考数学真题 答案 解析

文科数学

理科数学

2013辽宁高考理科数学选择题12题详细解答

上海数学(理工农医类)参考答案

一、(第1题至笫12题)

1. 1 2. 3. 4. 5. -1+i 6. 7.

8. 5 9. 10. 36 11. k=0,-1<b<1 12. a≤10

二、(第13题至笫16题)

13. C 14. A 15. A 16. D

三、(第17题至笫22题)

17.解:y=cos(x+ ) cos(x- )+ sin2x

=cos2x+ sin2x=2sin(2x+ )

∴函数y=cos(x+ ) cos(x- )+ sin2x的值域是[-2,2],最小正周期是π.

18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.

于是,BC=10 .

∵ , ∴sin∠ACB= ,

∵∠ACB<90° ∴∠ACB=41°

∴乙船应朝北偏东71°方向沿直线前往B处救援.

19.解:(1) 在四棱锥P-ABCD中,由PO⊥平面ABCD,得

∠PBO是PB与平面ABCD所成的角, ∠PBO=60°.

在Rt△AOB中BO=ABsin30°=1, 由PO⊥BO,

于是,PO=BOtg60°= ,而底面菱形的面积为2 .

∴四棱锥P-ABCD的体积V= ×2 × =2.

(2)解法一:以O为坐标原点,射线OB、OC、OP分别为x轴、y轴、z轴的正半轴建立空间直角坐标系.

在Rt△AOB中OA= ,于是,点A、B、D、P的坐标分别是A(0,- ,0),

B(1,0,0),D(-1,0,0)P(0,0, ).

E是PB的中点,则E( ,0, ) 于是 =( ,0, ), =(0, , ).

设 的夹角为θ,有cosθ= ,θ=arccos ,

∴异面直线DE与PA所成角的大小是arccos .

解法二:取AB的中点F,连接EF、DF.

由E是PB的中点,得EF‖PA,

∴∠FED是异面直线DE与PA所成角(或它的补角).

在Rt△AOB中AO=ABcos30°= =OP,

于是, 在等腰Rt△POA中,PA= ,则EF= .

在正△ABD和正△PBD中,DE=DF= .

cos∠FED= =

∴异面直线DE与PA所成角的大小是arccos .

20.证明:(1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x12,y2).

当直线l的钭率下存在时,直线l的方程为x=3,此时,直线l与抛物线相交于点A(3, )、B(3,- ).∴ =3

当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0.

当 y2=2x

得ky2-2y-6k=0,则y1y2=-6.

y=k(x-3)

又∵x1= y , x2= y ,

∴ =x1x2+y1y2= =3.

综上所述, 命题“如果直线l过点T(3,0),那么 =3”是真命题.

(2)逆命题是:设直线l交抛物线y2=2x于A、B两点,如果 =3,那么该直线过点T(3,0).该命题是假命题.

例如:取抛物线上的点A(2,2),B( ,1),此时 =3,

直线AB的方程为Y= (X+1),而T(3,0)不在直线AB上.

说明:由抛物线y2=2x上的点A(x1,y1)、B(x12,y2)满足 =3,可得y1y2=-6.

或y1y2=2,如果y1y2=-6.,可证得直线AB过点(3,0);如果y1y2=2, 可证得直线AB过点(-1,0),而不过点(3,0).

21.证明(1)当n=1时,a2=2a,则 =a;

2≤n≤2k-1时, an+1=(a-1) Sn+2, an=(a-1) Sn-1+2,

an+1-an=(a-1) an, ∴ =a, ∴数列{an}是等比数列.

解(2)由(1)得an=2a , ∴a1a2…an=2 a =2 a =a ,

bn= (n=1,2,…,2k).

(3)设bn≤ ,解得n≤k+ ,又n是正整数,于是当n≤k时, bn< ;

当n≥k+1时, bn> .

原式=( -b1)+( -b2)+…+( -bk)+(bk+1- )+…+(b2k- )

=(bk+1+…+b2k)-(b1+…+bk)

= = .

当 ≤4,得k2-8k+4≤0, 4-2 ≤k≤4+2 ,又k≥2,

∴当k=2,3,4,5,6,7时,原不等式成立.

22.解(1) 函数y=x+ (x>0)的最小值是2 ,则2 =6, ∴b=log29.

(2)设0<x1<x2,y2-y1= .

当 <x1<x2时, y2>y1, 函数y= 在[ ,+∞)上是增函数;

当0<x1<x2< 时y2<y1, 函数y= 在(0, ]上是减函数.

又y= 是偶函数,于是,该函数在(-∞,- ]上是减函数, 在[- ,0)上是增函数.

(3)可以把函数推广为y= (常数a>0),其中n是正整数.

当n是奇数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,

在(-∞,- ]上是增函数, 在[- ,0)上是减函数.

当n是偶数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,

在(-∞,- ]上是减函数, 在[- ,0)上是增函数.

F(x)= +

=

因此F(x) 在 [ ,1]上是减函数,在[1,2]上是增函数.

所以,当x= 或x=2时, F(x)取得最大值( )n+( )n;

当x=1时F(x)取得最小值2n+1.

图画不到。

2022年全国乙卷高考数学试题答案

[解]

∵x^2f′(x)+2xf(x)=e^x/x,∴x^2f′(x)=e^x/x-2xf(x),

∴f′(x)=[e^x/x-2xf(x)]/x^2,

令f′(x)=0,得:e^x/x-2xf(x)=0,∴f(x)=e^x/(2x^2)。

令f(x)=e^x/(2x^2)中的x=2,得:f(2)=e^2/8,这说明,当f′(x)=0时,有:x=2。

∴当f(x)有极值时,就在x=2时取得。······①

由x^2f′(x)+2xf(x)=e^x/x,两边取导数,得:

2xf′(x)+x^2f″(x)+2f(x)+2xf′(x)=(xe^x-e^x)/x^2,

∴当f(x)有极值时,有:x^2f″(x)+e^x/x^2=(xe^x-e^x)/x^2,

∴f″(x)=(xe^x-2e^x)/x^4。

∴f″(2)=(2e^x-2e^2)/16=0,∴当x=2时,f(x)没有极值。······②

综合①、②,得:f(x)没有极值,∴本题的答案是D。

高考理科数学题,求17题过程及答案

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。

2022年全国乙卷高考数学试题答案

全面认识你自己

认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。

首先,对自我的认识来源于 自我评价 。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的 教育 一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。

其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。

最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。

高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。

与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。

此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。

在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。

考生个人特征情况

考生个人特征如兴趣、特长、志向、能力、职业价值观等。

兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80 %~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。

特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与 逻辑思维 能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。

志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。

能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、 记忆力 、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加, 他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是 不宜作为一个绝对化的考虑因素。

职业价值观;一般说来,职业价值观与理想基本是一致的, 但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。

2022年全国乙卷高考数学试题答案相关 文章 :

★ 2022高考全国乙卷试题及答案(理科)

★ 2022高考理科数学乙卷试题解析

★ 2022年全国乙卷高考理科数学(真题)

★ 2022年全国乙卷文科数学卷真题公布(可下载)

★ 2022年高考数学试题及答案(新高考二卷)

★ 2022年全国乙卷高考数学(文)真题及答案

★ 2022年全国理科数学卷试题答案及解析

★ 2022全国Ⅰ卷高考数学试题及参考答案一览

★ 2022年英语全国乙卷试题及答案(版)

★ 2022年高考乙卷数学真题试卷

a2=2a1-2+2=2a1=2×2=4

a3=2a2-3+2=2a2-1=2×4-1=7

n≥2时,

an=2a(n-1)-n+2

an-n=2a(n-1)-2n+2=2a(n-1)-2(n-1)=2[a(n-1)-(n-1)]

(an-n)/[a(n-1)-(n-1)]=2,为定值

a1-1=2-1=1,数列{an-n}是以1为首项,2为公比的等比数列

an-n=1×2^(n-1)=2^(n-1)

an=n+2^(n-1)

bn=an/2^(n-1)=[n+2^(n-1)]/2^(n-1)=1+ n/2^(n-1)

Sn=b1+b2+...+bn=1+1/1+1+2/2+...+1+n/2^(n-1)=n+ 1/1+2/2+...+n/2^(n-1)

令Cn=1/1+2/2+...+n/2^(n-1)

则(1/2)Cn=1/2+2/2^2+...+(n-1)/2^(n-1)+n/2?

Cn-(1/2)Cn=(1/2)Cn=1+1/2+...+1/2^(n-1)-n/2?

=1×[1-(1/2)?]/(1-1/2)-n/2?

=2- (n+2)/2?

Cn=4-2(n+2)/2?=4- n/2^(n-1) -1/2^(n-2)

Sn=n+Cn=n+4- n/2^(n-1) -1/2^(n-2)

文章标签: # 高考 # 数学 # 理科